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Abstract 

The method of fitting a learnt and continually revised 
profile to X-ray diffraction step-scan measurements, 
previously described for protein crystals and a linear 
diffractometer, has been modified and extended for a 
wider range of samples and a four-circle diffractometer. 
Variation of peak width is dealt with by assuming an 
anisotropic functional form, the parameters for which 
are derived by least-squares refinement from measure- 
ments of selected strong reflexions. The effect of the a 
doublet on the reflexion shape is treated by an empirical 
method, which extracts a~ and a 2 components from the 
observed profile with a minimum of assumptions. 
Several internal consistency tests are made to test the 
validity of the method for every measured reflexion, and 
possible errors are flagged. Application of the method 
enables a considerable increase in data-collection speed 
over conventional methods, without corresponding loss 
of precision. Typical rates of data collection by this 
method are 100 reflexions per hour, or 2-3 medium- 
sized structures per week, for a Stoe-Siemens AED 
diffractometer and a 2 kW tube (Mo Ka radiation, 
graphite monochromator). 

1. Introduction 

The quantities of interest in single-crystal data 
collection by X-ray diffraction are the integrated 
intensity I and its e.s.d, a(I) for each reflexion. 
Different methods have been described for obtaining 
these quantities from measured reflexion profiles. The 
simplest of all is the background-peak-background 
(BPB) method, in which the integration is performed at 
the time of measurement and the individual points of 
the profile are ignored. In this method, the background 
measurements may be stationary, or may themselves be 
the sum of the outer points of the profile measurement. 
Various improvements to this basic method have been 
proposed, usually with one or more of the aims: (i) to 
allow for misplaced reflexion peaks, caused by crystal 
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movement and/or inaccurate unit cell and orientation 
parameters; (ii) to reduce the width of the scan 
required; (iii) to reduce counting times (and hence, in 
many cases, crystal decomposition in the X-ray beam) 
without loss of precision; (iv) to improve precision for a 
given measurement time. These improvements make 
use of the individual profile points rather than their sum 
alone. 

The ordinate analysis method (Watson, Shotton, 
Cox & Muirhead, 1970) locates the centre of a reflexion 
by finding the n adjacent profile points giving maximum 
net intensity. This method has been criticized for 
introducing systematic bias in the weak reflexions by 
Tickle (1975), who suggests instead that the peak 
centre be determined as the median of the measured 
profile. The peak intensity is then the sum of the n 
points centred on the median and the remaining points 
constitute the background. 

More complex methods, in which the dividing points 
between the peak and each background are determined 
by analysing each reflexion profile, include those of 
Bartl & Schuckmann (1966) and Slaughter (1969). The 
a<ffl<7 method of Lehmann & Larsen (1974)was 
developed for neutron diffraction studies and is not 
applicable to X-rays without some empirical 
modification (Blessing, Coppens & Becker, 1974). A 
selection of profile-analysis methods has been examined 
in detail by van der Wal, de Boer & Vos (1979). The 
object of each of these methods is to determine the 
optimum division of the measured profile into reflexion 
peak and background regions. Once this is achieved, 
the net intensity is obtained by subtracting the total 
background count from the total peak count (after 
suitable scaling if the numbers of points are unequal in 
the two regions). The optimizing process, whichever it 
is, increases the value of I/a(I) compared with the 
traditional BPB method. 

A fundamentally different approach is to fit the sum 
of a peak function and a background function to the 
observed profile, and thus to derive least-squares 
estimates of I and a(I). Norrestam (1972) and Hanson, 
Watenpaugh, Sieker & Jensen (1979) have used a 
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Gaussian peak function, fitted to a much smaller 
number of points than is usual for any of the 
BPB-based methods described above. The use of a 
standard peak function effectively combats the adverse 
effect on the l / a ( l )  ratio of the reduced total time spent 
on reflexion measurement. The assumption of a 
Gaussian shape for the reflexion profile is reasonable, 
provided that measurements are not made at 
sufficiently high angles to produce significant a~-t~ 2 
splitting. This is usually the case in protein 
crystallography with Cu Ka radiation. The problem is 
greater for Mo Ka radiation, commonly used for 
inorganic and organometallic studies, because the 
doublet resolution is relatively greater (Norrestam, 
1972). 

In the method of Diamond (1969), a stored 
normalized profile is used for fitting, instead of an 
analytical function. The stored profile is learnt from the 
particular crystal under investigation, and is continually 
revised during the data collection, each measured 
reflexion of significant intensity making a contribution 
to it. This method has the advantage of not assuming a 
particular functional form of the reflexion profile, and is 
particularly effective for weak reflexions. A limited 
degree of variation of reflexion shape is allowed for by 
the profile learning process. Here again, the a-doublet 
separation is a problem. In this paper we present a 
method of dealing both with this problem and also with 
variations in profile width produced by anisotropy of 
crystal mosaic spread and non-uniformity of crystal 
dimensions (e.g. for needle and plate crystals, for which 
the effects can be severe), thus making the method of 
Diamond much more generally applicable. 

Familiarity with the basic points of Diamond's 
(1969) method is assumed as a foundation for the 
following sections. 

2. Principle 

We tackle the two problems separately. If we had a 
source of pure Kt h radiation without Ka 2, all reflexions 
would be of approximately the same form, but the 
width would vary because of various anisotropic 
factors, and would also increase with Bragg angle 
because of wavelength dispersion within the still not 
strictly monochromatic Ka~ band. Superimposed on 
this width variation is the effect of the a doublet. At low 
Bragg angles, the K a  I and Ka 2 reflexions are virtually 
superimposed, but with increasing 0, the Ka2 reflexion 
gradually emerges on the high-0 side, introducing 
asymmetry into the combined reflexion form because of 
its lower intensity. If the reflexions are narrow enough, 
the two peaks may be resolved at high angles. 

The basic principle of our method is to extract from 
the measured profile of each reflexion the a I and (1~ 2 
components, regardless of Bragg angle, and with as few 
assumptions as possible about their form. The two 

separated components are then superimposed and 
summed, to produce a pure-component peak. 
Variations in the width of this peak over reciprocal 
space are fitted by a simple function, which is derived 
for each crystal before data collection begins, and from 
which the correct scan parameters are calculated for 
each reflexion. The learnt profile corresponds to a 
pure-component peak, i.e. has the effects of a-doublet 
separation removed from it, and the profile-learning 
process which takes place during data collection 
effectively makes fine-tuning adjustments to the initially 
determined width parameters. Like Diamond, we 
always fold reflexion profiles about their medians before 
fitting the learnt profile to them; in our case, this folding 
is performed on the pure-component peak, i.e. after 
separation and superposition of the a~ and a 2 
components. The learnt profile is then a set of n/2 
points for an n-point scan. 

According to Diamond, the optimum scan width for 
the profile method is about twice the peak width (base 
to base) or a little less, but for a linear diffractometer, 
mis-centring of the reflexions in the scan sets a lower 
limit on the possible scan width which may be greater 
than this optimum value. For a four-circle 
diffractometer, stable crystal, and accurate crystal 
orientation matrix, mis-centring is less of a problem. 
We set the desired scan width in o~ at about 1.5 times 
the expected width of the pure-component peak, plus 
the a~-a 2 separation. This expected width is taken as 8s, 
where s is the r.m.s, width of the folded profile for the 
reflexion peak (Diamond's a). Thus the scan width is 
W = 12s for the pure-component peak. In practice, we 
have to make a wider scan, because our diffractometer 
circles can only be set to 0.01°,  and the scan interval 
must be rounded up to the next multiple of 0.01 o 

To determine the expected pure-component peak 
width and hence the scan parameters for a reflexion, we 
assume that W can be described for all reflexions by a 
seven-parameter function, of the same form as that 
used by Hanson et al. (1979): 

W =  ~. ~. a i ajAij  + B tan 0 (1) 

where the a i are the direction cosines of the diffraction 
vector relative to a crystal-fixed set of Cartesian axes, 
and A is a symmetric 3 x 3 tensor. The term Btan 0 
allows for wavelength dispersion within a~ and tt2, but 
not for the a~-a 2 separation itself, which is treated 
separately, as described in the next section. The values 
of B and the components of A are determined for each 
crystal before data collection begins. 

3. Method 

Let us assume that we already have values for the 
scan-width parameters A u and B and an initial folded 
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profile P of n/2 points. The following steps are required 
for each reflexion to be measured. 

(i) From the indices and orientation matrix, 
calculate inter alia W from (1). Calculate A~o' = W/(n  
- 1), then round it up to the next multiple of 0.01 ° to 
give the scan interval Aog. The ratio f of scan intervals 
for crystal (co) and counter (20) is specified by the user, 
A20 = fA tn .  We generally set f = 1 (a 0/09 scan), 
which is a compromise between the relative advantages 
and disadvantages of the co scan ( f  = 0) and the 20/e9 
scan ( f  = 2) [see, for example, Werner (1972) and 
Alexander & Smith (1964)]. 

(ii) To allow for the tt 1-~t2 separation, increase the 
number of points in the scan, m = n + [0(tt~) - 
0(~2)]/A09, rounded up to the next integer. 

(iii) Scan the reflexion for m points, beginning at an 
angle (n - 1)Ao0/2 below the expected ~ 1 position, with 
a minimum counting time per step, as specified by the 
user. This gives an array V of m points. 

(iv) Calculate the position of the median and from it 
initial values for the ~ and~t 2 peak positions [from the 
known ~,(¢t l), 2(tt 2) and 2(6)wavelengths]. 

(v) Set up two arrays X and Y, each of m points, 
corresponding to two peaks centred on these tt~ and ~2 
positions. The value for each point is calculated from 
the current learnt profile, by interpolation, allowing for 
the expected mismatch A ~ / A w '  of widths, i.e. the 
arrays X and Y represent the expected ideal ~ and ~t 2 
reflexion profiles for the reflexion as measured. All 
interpolations performed in this method are by the 
four-point Lagrangian formula 

X,+p = - ~ p ( p -  1 ) ( p -  2))(,_1 
+ ½(p + 1 ) ( p -  1 ) ( p -  2)X,, 

-½(p  + 1 ) p ( p -  2)X,,+, 

- k ( P  + 1 ) p ( p -  I)X,,÷2 

where n is an integer and 0 < p < 1. 
(vi) Take an average of the few extreme low-angle 

points of V and another of the extreme high-angle 
points. Use these to calculate a crude linear sloping 
background for the reflexion in array Z and subtract 
the points of Z from F. This step facilitates the 
following empirical separation of the ~, and ~2 peaks. If 
the measured reflexion has a median so far off-centre 
that no background is observed at one end of the scan, 
the reflexion is flagged as an error, and not further 
treated. This occurs rarely if the crystal is securely 
mounted. 

(vii) Scale the arrays X and Y, so that V i -- 1.5 X t = 
3 Yi, i.e. in the expected ~t ~ : tt2 intensity ratio of 2 : 1 (for 
Mo K~t). 

(viii) Adjust the individual points of X and Y, so that 
Xi + Yi = Vi, by multiplying each by 1 + (V i - X~ - 
Y i ) / (Xi  + Yi). The effect of this is to compare V i with 
X i + Y~ and to distribute the excess (or deficit) in V~ 
between X~ and Y~ in the ratio of their initial values. 

(ix) Divide each point of Z between X and Y, 
increasing X i by ] Z  i and Yi by ]Z  t. Calculate the 
medians of X and Y. 

The net effect of steps (iv) to (ix) is to extract from 
the observed reflexion profile the a 1 and a 2 components. 
In setting up initial components [steps (iv) to (vii)l, the 
assumptions are made that both components have the 
same form, which is that of the current learnt profile, 
that they occur with the expected separation (though 
not necessarily at exactly the expected positions in the 
scan), and that they have an intensity ratio of 2: 1. In 
step (viii), these constraints are effectively relaxed, so 
that the resulting components represent a balance 
between reasonable assumptions and observed 
measurements. We have tried a variety of methods for 
extracting the ~1 and ~2 components from the measured 
profile, most of them involving iterative calculations, 
but the method finally chosen and described here is the 
simplest, gives the best results, and imposes the fewest 
constraints. Its results are subjected to extensive 
internal checking, as described in the next steps, and its 
validity is borne out by its success (see §§ 6 and 7). 

(x) Fold the two components about their medians 
and add the two results together. The n-point array 
obtained is a pure-component peak for this reflexion 
but, because of the rounding up of Aog, the width does 
not match that of the learnt profile. 

(xi) Interpolate the observed profile array to adjust 
its width by the ratio Aoo/Ato'. The folding and 
superposition of the component peaks has something of 
a smoothing effect, so this interpolation works well, 
even for weak reflexions. 

(xii) Fit the sum of the learnt profile P and a flat 
background to this derived reflexion profile Q, to obtain 
least-squares values for the intensity I and its e.s.d. 
o(I) ,  from equations (13), (15) and (16) of Diamond 
(1969). 

(xiii) Calculate alternative values of 1 and a( l )  by 
the BPB method. For this purpose, the original 
measured profile V is used, and the peak is considered 
to be composed of all points within 4s e of either the ~tl 
or tt 2 peak positions determined in step (iv); s v is here 
the r.m.s, width of the current learnt profile. This 
calculation is completely independent of steps (v) to 
(xii), and so provides an internal check on the results 
obtained from the profile extraction and fitting. 

(xiv) Select the result giving lower a(l) ,  but if the 
residual V/2-R/n for the profile fit is >1.3, select the 
BPB result. If I / o ( l )  is greater than a pre-selected 
value, continue with step (xv). Otherwise, estimate the 
counting time per step required to achieve this desired 
precision. If it can be attained within a prescribed 
maximum time, remeasure the reflexion for the extra 
time required, combine the two measurements in V and 
return to step (iv). If the desired precision cannot be 
attained within the given maximum time, set a default 
measuring time chosen by the user. If this is greater 
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than the minimum time, remeasure for the extra time 
and return to step (iv). 

(xv) Calculate the r.m.s, width of the profile Q for 
diagnostic purposes (se). 

(xvi) Update the learnt profile. The contribution of Q 
to the profile (after subtraction of background and 
normalization) is 

(I /Io)  2 
q = (2) 

1 + ( 1 / l o )  2 

such that P is replaced by (I - q)P + qQ. The constant 
I 0 is usually taken as half the maximum intensity so far 
found for any reflexion, though it can be altered to give 
either more- or less-rapid updating of the profile, and 
the contribution q is reduced for reflexions giving a poor 
profile fit. 

(xvii) Output results. For each reflexion the output 
contains inter alia indices, I, a ( l ) ,  dtn, measuring time, 
q, and a set of diagnostic flags and values. These values 
include the profile-fit residual, the difference (expressed 
in e.s.d.'s) between the profile and BPB results, the 
discrepancy between learnt and observed profile widths 
(s e and sQ), and the discrepancy between expected and 
observed peak median positions. Reflexions are flagged 
for diagnostic purposes when discrepancy values 
exceed preset limits. At intervals during data collection, 
when standard reflexions are measured, running totals 
of all flags are printed out. 

4. Obtaining initial parameters 

Before data collection begins, we must obtain values for 
the scan-width parameters (Aij and B) and an initial 
profile. We use the data-collection routine itself for this 
purpose, with a few modifications. 

The first step is to assume an isotropic width 
function, 

W = A  + B t a n 0  (3) 

instead of the anisotropic form given in (1), and to set 
up an initial profile of Gaussian form, with sp = 
(n - I)/12 (expressed here in number of steps rather 
than degrees). Rough values of A and B are obtained by 
estimating the widths at half-height of one low-0 and 
one high-0 reflexion. These two reflexions are entered 
into a list, together with a number (between about 20 
and 50) of others, which are chosen to cover reciprocal 
space as widely as possible (such reflexions of medium 
to high intensity are generally already available from 
the preliminary investigations of unit cell, orientation, 
space group, etc.). 

A preliminary data collection is now performed for 
these reflexions, with the method already described, but 
with the following modifications: 

(a) After the first two reflexions have been 
measured, the derived r.m.s, widths sQ [step (xv)] are 

used to obtain improved estimates of A and B in (3) for 
W. 

(b) The value of sQ for each reflexion is stored. 
(c) The profiles V, X and Y are printed. 
(d) After step (xv), the profile Q is further inter- 

polated to produce a peak with sQ = W/12 (in degrees) 
= (n - 1)/12 (in steps). When the learnt profile is 
updated, this extra interpolation maintains an almost 
constant sp, compensating for deviations from the 
isotropic approximation for W. The effect is to produce 
an initial learnt profile which corresponds to the form of 
the reflexions for the particular crystal being studied, 
allowing for width variations. 

(e) In the profile updating step, the contribution for 
the j th  reflexion is 

q = 1/ ( j  + 1) 

instead of the expression in (2). This produces an equal 
contribution from each reflexion to the initial profile. 

( f )  The values o f / a n d  a( I )  are ignored. 
After all reflexions in the list have been measured, the 

parameters Aij and B are determined by a least-squares 
fit of the sQ values, and data collection proper can 
begin. Output from this initializing routine contains the 
derived A ij and B parameters with e.s.d.'s, the starting 
profile, and a list of observed and calculated reflexion 
widths with their differences. Reflexions with unusual 
shapes can be recognized from the printed widths and 
the full V, X and Y arrays, investigated, and removed 
from the list if necessary. The routine can be executed 
again, in which case the already derived profile and 
width parameters are available as initial estimates. The 
time required for our equipment is normally less than 1 
min per reflexion. 

5. Implementation 

The method is in use for a Stoe-Siemens AED 
four-circle diffractometer with graphite-mono- 
chromated Mo Ktx radiation. This instrument combines 
high mechanical precision with fast positioning of the 
circles. The motors, shutters, counting-chain and 
associated devices are controlled by a microprocessor, 
which receives instructions from and returns results to a 
host computer. The microprocessor, its ROM resident 
program, and suitable assembly routines for the 
interface with the host computer were supplied with the 
diffractometer. The control program, which replaces 
that supplied, is written in Basic for a Data General 
Eclipse $250 mini-computer, and runs in time-shared 
mode with other Basic programs and with Fortran 
programs for structure solution, refinement, plotting, 
etc. The advantages of Basic include (i) the suitability of 
the supplied assembler subroutines without major 
modification; (ii) the time-sharing configuration of Data 
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General 's Multiuser Basic system; (iii) the ease of 
program modification. The major disadvantage is the 
slow execution speed compared with, for example, 
Fortran. Thus, the process of extracting and fitting a 
profile takes several seconds. In order not to waste this 
time, before beginning the process, we send an 
instruction to the microprocessor to reset the circles to 
the beginning of the scan (we scan always in the same 
direction to avoid the effects of backlash and/or 
uncertainty in the circle position sensors, which amount 
to about 0.01°),  or for the next reflexion if the current 
reflexion has already been scanned twice. This is a form 
of internal time-sharing, and saves about 5% of total 
data-collection time on average, at the cost of further 
complication of the program. 

Further comments which are relevant to the data- 
collection method are: 

(i) Tests have indicated that the profile-fitting 
method produces considerable improvement in the 
I /a( I )  ratio for a given measuring time, the value of 
tr(I) being decreased by a factor >2 in many cases for 
weak reflexions. Alternatively stated, for such reflexions 
we can attain the same precision with less than a 
quarter of the counting time required by the traditional 
BPB method. 

(ii) Our data-collection strategy of scanning all 
reflexions for a minimum time, then for an additional 
time if required, is approximately a constant-precision 
rather than a constant-time method. Such methods 
have been described previously (e.g. Grant, 1973; 
Freeman, Guss, Nockoids, Page & Webster, 1970) and 
are preferable because of the more effective use of 
data-collection time and the greater suitability of the 
data for least-squares refinement. Typical settings are: 
number of steps n -- 24, desired I /a ( I )  = 20, minimum 
time per step = 0.5s, maximum time = 2 or 3s, default 
time -- minimum time. Thus the weakest reflexions are 
measured only at the fastest speed, but no reflexions 
(other than those with a calculated median grossly in 
error, or systematic absences due to lattice centring) are 
skipped. The inclusion of the weakest reflexions in the 
data set is important for structure solution by certain 
direct methods (e.g. when negative quartets are to be 
used); such reflexions, with I < ka(I)  (k in the range 
1-3) are commonly discarded for structure refinement. 

(iii) Special measurement procedures are incor- 
porated within the same data-collection routine, as 
options selected by user-set flags. Special procedures 
currently incorporated are (a) measurement of 
refiexions at a series of azimuthal angle settings, for 
empirical absorption correction calculations (the 
azimuthal angle ~, is included in the output) and (b) 
measurement of Friedel pairs on opposite sides of the 
incident beam so that the absorption correction is 
approximately the same for both reflexions if the crystal 
shape is symmetrical for absolute configuration studies. 

6. Examples of  profile extraction 

The figures show examples of the a l - a  2 profile 
extraction. The crystal for Fig. 1 was an antimony 
oxide derivative and was extensively used for testing 
purposes because of its extreme crystal shape [a thin 
needle giving anisotropic width parameters A~I -- 
0.63 (3), A22 = 0.92 (4), A ,  = 0.83 (2), A23 = 0.01 (2), 
AI3 = 0.01 (3), A~2 = 0.00 (3), B = 0.02 (6), derived 
from 28 reflexions], its intense scattering even at high 
angles, and the narrowness of the reflexions. Results are 
shown for four reflexions of different Bragg angles. 
These strong reflexions (relative intensities ca 
10" 10 :2 :1 )  give hig.h profile-fit residuals, as expected 
(2.0, 1.6, 3.0 and 3.0 respectively), but for all four the 
values obtained for I by the profile and BPB methods 

(a) 

(b) 

(~) . . . . . . . . . . .  _ - : : ;  

(od) ~ ............... 
Fig. 1. Examples of profile extraction for a crystal with a high 

degree of a-doublet resolution. The reflexions are from different 
regions of reciprocal space: (a) O = 4.93 °, measured at 25 
points, A¢o = 0.04°; (b) 0 = 13.86 °, 27 points, AoJ = 0.04°; (c) 
0 = 28.61 °, 27 points, do9 = 0.05°; (d) 0 = 36.14 °, 30 points, 
Ato = 0.05 °. The outer background points of the wider scans are 
omitted. 
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are insignificantly different I the largest discrepancy is 
/profile - -  IBt, B = --l'2[a2(lprome) + a2(IBpB)] 1/2 for 
reflexion (d)}. This crystal is an extreme case, the a l--a 2 
resolution being otherwise rarely complete. 

A second crystal (a complex of copper with bridging 
ligands) (Fig. 2) is more typical, the reflexions being 
broader and the a doublet remaining incompletely 
resolved at the highest Bragg angles measured. The 
four reflexions shown have relative intensities ca 
3" 2 .5-1-1  and are all 0k0 reflexions, so the width 
variation is entirely accounted for by the a-doublet 
splitting and the wavelength dispersion [B = 0.78 (3)]. 
In this case, the Aij components are AI~ = 0.524 (6), 
A22 = 0.518 (6), A33 = 0.525 (6), A23 = --0.003 (3), 
AI3  = 0 " 0 0 2  (5 ) ,  A,2 = -0 .005  (7), derived from 20 
reflexions. Profile-fit residuals for the four reflexions are 
2-6, 1.6, 0.9 and 1.2, and for all four reflexions 
the discrepancy I/profil e - -  IBpBI is <0.8 [O2(Iprofile) + 
o2(IspB)] ~/2. This discrepancy shows no systematic 
trends with intensity or profile-fit residual. 

(a) 

(c) 

(d) 
• _- ~ _ ~  _ _ _ - , 

Fig. 2. Profiles of four reflexions from one reciprocal-lattice row: 
(a) 0 = 5.60 °, 26 points, Ao) = 0.03°; (b) 0 = 8.41 °, 26 points, 
Atn = 0.03 °. (c) 0=  14.11 °, 27 points, Ao9 = 0.04; (d) O= 
17.01 °, 27 points, Am = 0.04 °. 

7 .  R e s u l t s  

This method has been used to collect 58 sets of data in 
eight months. The subjects studied have been drawn 
from organic, organometallic and inorganic chemistry, 
with a wide variety of unit-cell sizes and symmetries, 
mosaic spreads, proportions of weak and strong 
reflexions and crystal qualities. Final R indices for 
crystals of medium to high quality are typically in the 
range 0.03-0.06;  higher values can usually be traced to 
poor crystal quality, disorder, high thermal motion, or 
other factors dictated by the crystal rather than the 
data collection. With the typical data-collection 
parameters given in § 5, the average rate of data 
collection is 100 reflexions per hour. We have a rule of 
thumb that the total diffractometer time required for a 
crystal, including all preliminary investigations (cell and 
space-group determination, etc.) as well as data 
collection itself, is about 1.5 h per independent 
non-hydrogen atom. Thus, an average of three 50- to 
60-atom structures can be investigated per week, 
assuming no time is lost by machine faults, program 
development, etc. 

8 .  S u m m a r y  

The method described here is a development of the 
established learnt-profile analysis of X-ray reflexions, 
and makes possible a considerable increase in the rate 
of data collection without loss of precision, when 
compared with methods which perform little or no 
analysis of the individual points of the reflexion profile. 
The method also has a high degree of internal 
consistency checking. Results obtained so far 
demonstrate its general applicability and validity. It is 
worth noting that with small modifications it could be 
used for off-line processing of profile data; the on-line 
application is convenient and useful in reducing the full 
profile to a final output of I and o(I), and is valuable in 
selecting the appropriate counting-time to give approxi- 
mately constant-count statistics, but is not essential. 

I thank my colleagues for their patience over several 
weeks in which the diffractometer was unavailable for 
data collection during program development and 
testing, Professor G. M. Sheldrick for suggestions 
and encouragement and Dr M. Noltemeyer for technical 
assistance. 

R e f e r e n c e s  

ALEXANDER, L. E. & SMITH, G. S. (1964). Acta Cryst. 17, 
1195-1201. 

BARTL, M. Z. & SCHUCKMANN, W. (1966). Neues Jahrb. 
Mineral. Monatsh. 4, 126-130. 

BLESSING, R. H., COPPENS, P. & BECKER, P. (1974). J. Appl. 
Cryst. 7, 488-492. 



28 FASTER DATA C O L L E C T I O N  WITHOUT LOSS OF PRECISION 

DIAMOND, R. (1969). Acta Cryst. A25, 43-55. 
FREEMAN, H. C., Guss, J. M., NOCKOLDS, C. E., PAGE, R. 

& WEBSTER, A. (1970). Acta Cryst. A26, 149-152. 
GRANT, D. F. (1973). Acta Cryst. A29, 217. 
HANSON, J. C., WATENPAUGH, K. D., SIEKER, L. 8~, JENSEN, 

L. H. (1979). Acta Cryst. A35,616-621. 
LEHMANN, M. S. & LARSEN, F. K. (1974). Acta Cryst. A30, 

580-584. 

NORRESTAM, R. (1972). Acta Chem. Scand. 26, 3226-3234. 
SLAUGHTER, M. (1969). Z. Kristallogr. 129, 307-318. 
TICKLE, I. J. (1975). Acta Crvst. B31,329-331. 
WAL, U. R. VAN DER, DE BOER, J. L. & Vos, A. (1979). Acta 

Cryst. A35, 685-688. 
WATSON, U. C., SHOTTON, D. M., Cox, J. M. & MUIRHEAD, 

H. (1970). Nature (London), 225,806-811. 
WERNER, S. A. (1972). Acta Crvst. A28, 143-151. 

Acta Cryst. (1981). A37, 28-35 

Electron Microscopy of Oxyborates. 
I. Defect Structures in the Minerals Pinakiolite, Ludwigite, Orthopinakiolite and 

Tak6uchiite 

BY JAN-OLOV BOVIN,* M. O'KEEFFE AND M. A. O'KEEFEt 

Chemistry Department and Center for  Solid State Science, A rizona State University, Tempe, Arizona 85281, 
USA 

(Received 19 October 1979; accepted 13 June 1980) 

Abstract 

Crystals of the minerals pinakiolite (Mg,Mn)~.77- 
(Mn,A1,Fe)rl~BO 5, ludwigite (Mg,Fe)2Fe3+BOs, 
orthopinakiolite (Mg,Mn)~.as(Mn3+,Fe3+)BO5 and 

3 +  3 +  tak~uchiite (Mg,Mn)l.97Mno.TsFeo.19BO 5 have been 
investigated by high-resolution transmission electron 
microscopy. Calculated and experimental images have 
been matched to ensure a proper interpretation. All 
the minerals except ludwigite show structural defects 
which give insight into structural relations in the 
pinakiolite family. It is shown that they can be described 
as chemical twinnings of pinakiolite. The most common 
defects can be described as missing twin operations. 

Introduction 

This investigation of oxyborates includes the minerals 
pinakiolite, ludwigite, orthopinakiolite and tak6uchiite 
all with the general formula M3BOs, where M stands 
for different combinations of mainly the ions Mg 2÷, 
Mn 2÷, Fe 2+, Mn 3+ and Fe 3÷. The crystal structures of 
pinakiolite, ludwigite and orthopinakiolite have been 
determined and refined by several groups in the past. 
Thus the structure of pinakiolite was determined by 
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Tak6uchi, Watanab~ & Ito (1950) and refined by 
Moore & Araki (1974). The ludwigite structure was 
first determined by Tak~uchi et al. (1950) and several 
synthetic ferromagnetic compounds with the same 
structure were reported by Bertaut (1950). The 
structure of orthopinakiolite was solved by Tak6uchi, 
Haga, Kato & Miura (1978). The present investigation 
of oxyborates also revealed a new member of the 
pinakiolite family: tak6uchiite (Bovine & O'Keeffe, 
1980). Its structure has not yet been determined by 

X-ray methods but has been deduced from a suggested 
model (Tak~uchi, 1978) by comparing high-resolution 

Table 1. Chemical formula for  M3BO 5 minerals 
related to pinakiolite 

Mineral & reference Structural formula 

Pinakiolite 
Moore & Araki 
(1974) 

Hulsite 2+ 3+ 4+ M Fe Fe Sn BO g0.64 1.46 0.67 0.20 5 
Konnert et al. (1976) 

Ludwig i t e  (Mg,Fe2+)2Fe3*BO 5 
Tak~uchi et al. 
(1950) 

Vonsenite 
Tak6uchi (1956) 

Orthopinakiolite 
Tak~uchi et al. 
(1978) 

Tak6uchiite 
Bovin & O'Keeffe 
(1980, 1981) 
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Mg1.68M no2.+ogM n 3 + (AI 3 +,Fe 3 ~,M n4+)0 I IBO 5 

Mg0.75Fe~.+25Fe3 t BO 5 

Mn Mn Fe 130 Mg 2+ 3. 3+ 
1.42 0.43 0.88 0.22 5 

2+ 3+ 3+ '4+ Mg Mn Mn Fe Tl BO, 1.59 0.42 0.78 0.19 0.01 


